Abstract

The formation of the texture and the anisotropy of the mechanical properties in extruded rods of commercial alloys MA5, MA18, MA21 and also experimental Mg-Y-based and Mg-Y-Ce-based alloys are studied by X-ray diffraction and the measurement of the hardness and the tensile and compressive properties. It is shown that the magnesium alloys can be separated into three groups according to the anisotropy of the mechanical properties. The first group consists of the alloys not containing rare-earth metals and lithium, and the second group is the alloys with yttrium for which the yield strength in the axial direction of the rods are significantly higher than those in the transverse direction. The alloys of the first group demonstrate a substantial excess of the yield strength in the axial direction in the tension tests as compared to those in compression tests, and the second group alloys do not demonstrate such a difference. The ceriumand lithium-containing alloys (the third group) exhibit a weak anisotropy of the strength properties. A method for estimating the anisotropy of the strength properties is developed on the basis of calculation of the Taylor factors for basal slip averaged over all orientations of crystallites, and a quantitative method is developed for determining the phase composition by measuring the solid solution lattice parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.