Abstract

High entropy alloys (HEAs) have drawn attention among researchers due to their excellent mechanical properties at low and high temperatures, which pave the way for their numerous applications in various sectors. In this study, we have investigated the effect of temperature and strain rate on the mechanical properties of single crystal equimolar NbTiZrMoV alloy, a refractory HEA (RHEA), using molecular dynamics simulation with the help of a newly developed modified embedded atom method (MEAM) potential. Uniaxial tensile simulations were conducted along x-direction at temperatures between 77 K and 600 K, with temperature intervals of 100 K, and at strain rates of 0.001 ps−1, 0.005 ps−1, 0.025 ps−1, and 0.125 ps−1. Stress-strain curves were plotted from the simulation data, and different tensile properties of the alloy were calculated from the graph. This study suggests that the tensile strength and the elastic modulus of the HEA decrease with increasing temperature as the materials become soft at higher temperatures. Strain rate improves the tensile mechanical properties with increasing rate due to the lack of required time for atom rearrangement and dislocation entrapment requiring higher stresses to continue deformation. Ultimately, the tensile characteristics of the HEA are shown to be influenced by the content of alloying elements. Specifically, Mo content has a rising effect, and Nb content is having a reducing impact on the tensile properties of NbTiZrMoV HEA. The study provides insights into the mechanical properties of NbTiZrMoV HEA, which could inform its applications in various sectors due to its promising mechanical features at different temperatures and strain rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.