Abstract

The dynamic dilational properties of sodium 2-(2-(alkylaryloxy)-alkylamido)ethanesulfonates (12+nB-Ts) at the air–water interfaces were investigated by drop shape analysis, and their foam properties were also measured. The influences of time and bulk concentration on surface dilational properties were expounded. The results show that the molecular interaction controls the nature of adsorption film during lower concentration range, and the film behaves elastic in nature. During higher concentration range, the diffusion exchange process controls the dynamic dilational properties and the surface film shows remarkable viscoelasticity. An increase in hydrophobic chain length enhances the molecular interaction at low concentration and speeds up the diffusion exchange process at high concentration, which results in the different variations of modulus at different concentration regions. For 12+nB-Ts, too short a chain probably produces bad film elasticity, whereas too great a length produces too fast liquid drainage. Therefore the optimal length in the branched chain leads to the best foam stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call