Abstract

Alkali niobium germanate glasses were prepared by melt-quenching in the ternary systems 75GeO2-15Nb2O5-10M2O with M = Li, Na, K, Rb and Cs. Thermal properties of these glasses and related glass-ceramics are strongly dependent on the alkaline modifier. Structural investigations by Raman allowed to determine that the alkali radius has an influence on the number of non-bridging oxygens and consequently on the average glass network connectivity. Raman spectra of sodium, potassium and rubidium germanate glass-ceramics exhibited slight changes when compared to the pristine glass and the new Raman features can be attributed to a 3D NbO6 network similar to orthorhombic niobium oxide. Characterization of the heat-treated glasses allowed to determine the crystalline phases precipitated in the samples and it has been shown that a single perovskite bronze-like phase of general formula M2Nb8O21 can be obtained in Na, K, and Rb-containing glasses. Luminescent properties of Eu3+-doped glasses pointed out a non-regular tendency where sodium-based glass seems to be the inflexion point of luminescent data with higher asymmetry around Eu3+ ions and higher quantum efficiency. In transparent glass-ceramics, the Eu3+ luminescent properties are clearly modified in the Na- and K-based samples with lower symmetry and quantum efficiency after heat-treatment. Such optical behavior is attributed to Eu3+ migration in the perovskite crystalline phase with highly distorted Eu3+ sites and shorter Eu3+-Eu3+ distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.