Abstract

Biomass pyrolysis has been extensively investigated during the last decades both as a stand-alone process for the production of bio-based fuels and as intermediate stage in other thermochemical processes such as gasification and combustion. The comprehension of biomass pyrolysis mechanisms can greatly benefit from the study of the pyrolysis behavior of separated biomass organic components as well as of the effect of metal ions on their decomposition pathways. Only few works reported the metal ions effect on the pyrolysis of hemicellulose. In the present paper the influence of metal ions on hemicellulose pyrolysis was studied choosing commercial xylan as reference. The thermal behavior of raw and demineralized xylan samples was studied in a thermogravimetric apparatus at atmospheric pressure under nitrogen from 323 K up to 973 K with a heating rate of 5 K/min. Then steam assisted pyrolysis tests were carried out up to two different final temperatures, 873 and 973 K, at pressure P = 5 × 105 Pa and heating rate HR = 5 K/min. Products yields, gas releasing rates as a function of the temperature, gas and liquid compositions were compared for raw and demineralized samples. The raw and demineralized xylan exhibited different pyrolytic behaviors both in nitrogen and steam atmospheres. Raw xylan produced a higher amount of char compared to the demineralized one in nitrogen atmosphere, whereas negligible differences in char yields were observed in presence of steam. Demineralization pretreatment resulted in the recovery of a greater amount of furfural and depressed the production of gas in both the pyrolysis and the gasification stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.