Abstract

Over the last several years, the Naval Research Laboratory has been developing corrosion detection algorithms for assessing coatings conditions in tank and voids on US Navy Ships. The corrosion detection algorithm is based on four independent algorithms; two edge detection algorithms, a color algorithm and a grayscale algorithm. Of these four algorithms, the color algorithm is the key algorithm and to some extent drives overall algorithm performance. The four independent algorithm results are fused with other features to first generate an image level assessment of coatings damage. The image level results are next aggregated across a tank or void image set to generate a single coatings damage value for the tank or void being inspected. The color algorithm, algorithm fusion methodology and aggregation algorithm components are key to the overall performance of the corrosion detection algorithm. This paper will describe modifications that have been made in these three algorithm components to increase the corrosion detection algorithm’s overall operating range, to improve the algorithm’s ability to assess low coatings damage and to improve the accuracy of coatings damage classification at both the individual image as well as at the whole tank level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.