Abstract

Interaction and transformation of the mononuclear cationic dinitrosyl iron complex [Fe(SC(NH2)2)2(NO)2]+ (complex 1) upon binding with bovine serum albumin (BSA) have been explored using kinetic measurements, UV-Vis and fluorescence spectroscopy, and computational molecular modeling. BSA was found to bind up to five molecules of complex 1 per one protein molecule; as a result, the rate of NO release by complex 1 into solution decreases by a factor of 10. The binding constant of complex 1 with BSA measured by the quenching of intrinsic fluorescence of BSA is 5 × 105 М-1. Molecular docking calculations at pH = 7 have determined five-six low-energy binding sites for complex 1 at subunits I and II of BSA. The most stable protein-ligand complexes are located at the protein pockets near Cys34. The spectroscopic measurements and docking calculations have shown that the decomposition product of complex 1, the Fe(NO)2+ fragment, can form an adduct Fe(Cys34)(His39)(NO)2 (complex 2) with the coordination bonds of Fe with atoms S of Cys34 and ND of His39. The structure of complex 2 was supported by the density functional calculations of the absorption spectrum. Decomposition of complex 2 leads to nitrosylation of BSA at atom S of Cys34. Complexes 1 (bound with BSA), 2 and the nitrosylated BSA can serve as NO depot in plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.