Abstract

Human transthyretin (TTR) is a homo-tetrameric plasma protein associated with a high percentage of β-sheet forming amyloid fibrils. It accumulates in tissues or extracellular matrices to cause amyloid diseases. Free energy simulations with thermodynamic integration based on all-atom molecular dynamics simulations have been carried out to analyze the effects of the His88→Ala and Ser mutations on the stability of human TTR. The calculated free energy change differences (ΔΔG) caused by the His88→Ala and His88→Ser mutations are -1.84±0.86 and 7.56±0.55kcal/mol, respectively, which are in excellent agreement with prior reported experimental values. The simulation results show that the H88A mutant is more stable than the wild type, whereas the H88S mutant is less stable than the wild type. The free energy component analysis shows that the contribution to the free energy change difference (ΔΔG) for the His88→Ala and His88→Ser mutations mainly arise from electrostatic and van der Waals interactions, respectively. The electrostatic term stabilizes the H88A mutant more than the wild type, but the van der Waals interaction destabilizes the H88S mutant relative to the wild type. Individual residue contributions to the free energy change show neighboring residues exert stabilizing and destabilizing influence on the mutants. The implications of the simulation results for understanding the stabilizing and destabilizing effect and its contribution to protein stability are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call