Abstract
Stainless-steel slag was used to prepare glass-ceramics, which could solidify chromium (Cr) in the slag. The migration and distribution state of chromium in the slag during the preparation of the glass-ceramics have a great influence on the chromium fixation ability of the glass-ceramics. In this paper, the effects of Al2O3 content in the glass-ceramics on the migration and distribution of chromium during the nucleation and crystallization steps, and on the chromium fixation effect of the glass-ceramics were systematically studied. The results show that in the nucleation stage, with the increase of Al2O3 content, the number of chromium spinel (Cr-spinel) nanocrystals formed in the glass first increases and then decreases, and Cr in the glass phase gradually migrates to Cr-spinel nanocrystals. TEM and XPS analyses show that during crystallization, part of Cr in Cr-spinel diffuses into diopside lattice, and the other part of Cr still exists in Cr-spinel wrapped by diopside. Cr in the glass phase also diffuses and migrates into the diopside lattice with the formation of diopside crystals. The optimal Al2O3 content is 11.8wt.%, which results in 97.94wt.% of the total Cr being fixed in the diopside crystalline phase. The ability of chromium fixation is very high giving a very low Cr leaching concentration of 0.004mg/l. The research results provide theoretical and technical support for increased chromium fixation and realizing harmless and high-value utilization of stainless-steel slag.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.