Abstract

In this research, a defect-free dissimilar weld joint of AA7075-T6 and AA6061-T6 reinforced with Al2O3 nanoparticles was fabricated via friction stir welding (FSW). The influence of tool rotational speed (700, 900 and 1100 rpm), traverse speed (40, 50 and 60 mm/min) with varying volume fractions of Al2O3 nanoparticles (4%, 7% and 10%) on microstructural evolution and mechanical properties were investigated. The augmentation of various mechanical properties is based on the homogeneity of particle dispersion and grains refinement in the SZ of the FSWed joint. The findings revealed that the remarkable reduction in grain size in the SZ was observed owing to the incorporation of Al2O3 nanoparticles produces the pinning effect, which prevents the growth of grain boundaries by dynamic recrystallization (DRX). The increasing volume fraction of Al2O3 nanoparticles enhanced the mechanical properties such as tensile strength, % elongation and micro-hardness. Agglomeration of particles was observed in the SZ of the FSWed joints produced at lower tool rotational speed of 700 rpm and higher traverse speed of 60 mm/min due to unusual material flow. Homogenous particle dispersion and enhanced material mixing ensue at higher rotational speed of 1100 rpm and lower traverse speed of 40 mm/min exhibit higher tensile strength and micro-hardness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call