Abstract

Abstract In this study, microstructure and wear properties of A356 aluminum matrix nanocomposites reinforced with nano-Al2O3 particles were investigated. The powder metallurgy method was used for the production of 1 wt% and 2 wt% nano-Al2O3 particle reinforced nanocomposites. After 1 h of mechanical milling of A356 and nano-Al2O3 powders, green compacts were obtained by cold pressing. Green compacts were sintered at 550 °C in a vacuum environment (10−6 mbar) for 1 h. Samples were characterized by density, hardness measurements, scanning electron microscopy investigations, and wear tests. As the reinforcement ratio increased, there was a decrease in the densities of the nanocomposites, as well as an increase in the porosity. The highest hardness and the lowest weight loss values were obtained in 1 wt% Al2O3 reinforced nanocomposites. A decrease in hardness was measured at 2 wt% Al2O3 reinforced nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.