Abstract
Microstructure and mechanical properties of the Fe-Mn-Cr-Ni-Al system non-equiatomic high entropy alloys with a different Al content (x = 0–14 at.%) were studied in the present work. The Fe40Mn25Cr20Ni15 alloy was composed of the face-centered cubic (fcc) matrix phase with a small amount of coarse body-centered cubic (bcc) particles. Addition of a small amount of Al (x = 2–6) resulted in an increase in the fraction of the bcc phase to 26% and the formation of fine B2 precipitates within the bcc phase. At higher amounts of Al (x = 10 and x = 14) the microstructure consisted of coarse bcc matrix grains with the B2 precipitates inside. The alloys tend to become stronger with an increase in the Al content from 0 to 10 at.%; further increase in Al concentration did not influence strength considerably. The alloys exhibited pronounced softening with an increase in testing temperature from 25 to 400 °C–600 °C. Ductility of the alloys was high enough (>50%) at all temperatures. A quasi-binary Fe40Mn25Cr20Ni15-Al phase diagram was constructed using a ThermoCalc software and a TCHEA2 database; reasonable agreement between the experimental and predicted phase compositions of the alloys was obtained. It was suggested that an addition of the strong bcc-stabilizing and compound-forming Al to a bcc-prone Fe40Mn25Cr20Ni15 alloy is beneficial for the development of the alloys with the disordered bcc matrix and the embedded B2 precipitates having attractive mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.