Abstract

Pre-oxidation is warranted to improve cyanobacteria removal and minimize disinfection by-products (DBPs) precursors for subsequent coagulation with polyaluminum chloride (PACl) in drinking water treatment. However, the reduction in DBP precursors strongly depends on the Al hydrates for PACl coagulation. This study aimed to investigate the effects of intensified NaOCl and ClO2 pre-oxidation on the removal of Microcystis aeruginosa (MA) and the corresponding halogenated DBP precursors by PACl coagulation with different Al hydrates. Two PACl coagulants, namely PACl-W with 51% monomeric Al and PACl-H with 71% polymeric Al, were used for FlocCAM jar test. The results have shown that the reductions in MA cell and algogenic organic matter (AOM) are more pronounced by sweep flocculation in PACl-W coagulation coupled with NaOCl pre-oxidation. In contrast, ClO2 pre-oxidation with PACl-H coagulation outperforms the floc formation and the reduction in each fluorescent DOM substance, especially for humic acid-like (HAL) substances reduction in response to charge neutralization. Regardless of pre-oxidation approach, PACl-H coagulation exhibits a superior reduction in carbonaceous DBP formation potential (C-DBPFP) comparative PACl-W coagulation, especially for intensified pre-oxidation (Cl2:DOC = 3:1). Intensified NaOCl pre-oxidation is effective to enhance DBPFP reduction in a similar way to ClO2 oxidation by coagulation with both PACl coagulants. In addition, it clearly demonstrates that the halogenated DBP precursors are well-correlated with UV254 absorbance on the basis of principal component analysis (PCA) inference. It is concluded that intensified NaOCl pre-oxidation is an alternative approach to ClO2 pre-oxidation for the minimization of DBP precursors in oxidation-coagulation processes for cyanobacteria-laden water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call