Abstract
The microstructure evolution and mechanical properties of Mg−15.3Gd−1Zn alloys with different Al contents (0, 0.4, 0.7 and 1.0 wt.%) were investigated. Microstructural analysis indicates that the addition of 0.4 wt.% Al facilitates the formation of 18R-LPSO phase (Mg12Gd(Al, Zn)) in the Mg−Gd−Zn alloy. The contents of Al11Gd3 and Al2Gd increase with the increase of Al content, while the content of (Mg, Zn)3Gd decreases. After homogenization treatment, (Mg, Zn)3Gd, 18R-LPSO and some Al11Gd3 phases are transformed into the high-temperature stable 14H-LPSO phases. The particulate Al−Gd phases can stimulate the nucleation of dynamic recrystallization by the particle simulated nucleation (PSN) mechanism. The tensile strength of the as-rolled alloys is improved remarkably due to the grain refinement and the fiber-like reinforcement of LPSO phase. The precipitation of the β′ phase in the peak-aged alloys can significantly improve the strength. The peak-aged alloy containing 0.4 wt.% Al achieves excellent mechanical properties and the UTS, YS and elongation are 458 MPa, 375 MPa and 6.2%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.