Abstract

The thermal performance of fin-and-tube heat exchangers (HX) is a crucial aspect in a multitude of applications and fields; several design and operational parameters influence this performance. This study focuses on the issue of flow maldistribution and its effect on the HX thermal performance. For this purpose, an experimental setup is designed and implemented to emulate the conditions under which an automotive heat exchanger operates in regard to the non-uniform upstream airflow velocity distribution over the HX surface. The setup allows obtaining various configurations of airflow velocity non-uniformity of some desired mean velocity and standard deviation. The experimental results reveal that a higher degree of non-uniformity (higher standard deviation of the velocity distribution) causes an increased deterioration of the HX thermal performance. For example, at a water flowrate of 200 L/h and a mean airflow velocity of 2 m/s, increasing the standard deviation from 0 to 2 m/s (i.e., moving from the lowest to highest degrees of non-uniformity) causes a total deterioration of 27% in the performance (3.78 to 2.75 kW, respectively), which can also be observed in the increased level of outlet water temperature (53.8 to 58.2 °C, respectively). The obtained results confirm the numerical results reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call