Abstract

This study investigated the aerosol particle spreading characteristic under transient state at different location released by an assailantinside a mosque. Particles deposited at receivers were used to determine the virus reproductive number (Ro) over time. The spreading during coughing process wasvalidated with previous literature review using Computational Fluid Dynamics (CFD) simulation study. Mesh sensitivity study was done on the model to get better accuracy results and optimum computational load. Themodel involved internal space of the mosque and 160 prayers during the congregation prayers. It was discovered that, the particle spreading characteristics wasfound to be influenced mostly by the velocity distribution and velocity vector inside the mosque. This is due to force flow generated by fan and air conditionerair flow. Particles size less than 10μm werethe most deposited on the wall and ceiling. The particles greater than 30μm deposited on the ground andthe prayers body. The location of assailant at the center wasfound to cause the most infection among the prayers which was52% of the total prayer with the Roof 0.83. The assailant at top right and bottom right produced high Roof 0.73 and 0.6 while top left produced the lowest which was0.32. The existence of partition wasfound to reduce the particle spreading from the assailant at bottom left.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.