Abstract

Mechanical properties, microstructure, exfoliation corrosion (EXCO), and intergranular corrosion (IGC) behaviors of the spray-formed 7075 aluminum alloy after T6, T73, retrogression (R), and re-aging (RRA) treatment, respectively, were studied by using tensile tester, transmission electron microscope, and scanning electron microscope. The results show that the T6 process can increase the ultimate tensile strength (UTS) up to 760 MPa, while it decreases the elongation, the EXCO, and the IGC resistance of the alloy. The T73 process can improve elongation, the EXCO, and the IGC resistance of the alloy. The corrosion resistance of the alloy can also be improved by R and RRA processes with retrogression times increase. The tiny precipitated phases distributed homogeneously in the matrix can increase the UTS. The close-connected discrete grain boundary phases (GBP) and the narrow precipitate free zones (PFZ) will lower the elongation, the EXCO, and the IGC resistance of the alloy. Contrarily, the discrete GBP and wide PFZ can improve the elongation, the EXCO, and the IGC resistance of the alloy. The EXCO and the IGC behaviors for the spray-formed 7075 alloy after different aging treatments have been established according to the standards of ASTM G34-2001 (2007) and ASTM G110-1992 (2009).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call