Abstract

Magnesium alloy is very attractive in many industrial applications due to its low density. The structure-property relationships of the magnesium alloy under quasi-static loading have been extensively investigated. However, the dynamic behavior, particularly the mechanism of high-rate plastic deformation, of the magnesium alloy requires more in-depth investigations. In this paper, the effect of aging treatment on the quasi-static and dynamic properties of a typical rare earth Mg-Gd-Y magnesium alloy is investigated. In particular, the plastic deformation mechanism under dynamic compression loading is discussed. Split Hopkinson Pressure Bar (SHPB) was used to carry out dynamic compression tests with controllable plastic deformation by using stopper rings. The experimental results demonstrate that both static and dynamic properties of the Mg-Gd-Y alloy vary under various aging treatment conditions (under-aged, peak-aged and over-aged conditions), due to two different kinds of second phases: remnant micro size phase from solid solution treatment and nano precipitation from aging treatment. The results of microstructure characterization and statistic analysis of the metallographic phase are presented. The area fraction of the twinned grains increases due to aging treatment and dynamic loading. The main plastic deformation mechanism of the rare earth Mg-Gd-Y magnesium alloy is dislocation slip, rather than twinning for the conventional AZ31 magnesium alloy under high strain rate loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call