Abstract

Aging and thermal runaway are two significant reasons why lithium-ion batteries are struggling to become more widely available. Aging at different temperatures causes differences in the aging mechanism and thermal runaway behaviour of lithium-ion batteries. In this paper, four sets of commercial lithium-ion batteries are aged at 25 °C, 40 °C, 60 °C and 80 °C respectively for 100 cycles. Then the morphology and composition of the electrodes and separators are analysed in order to reveal the mechanism of changes in electrical performance and thermal stability due to aging at different temperatures. The differences in the decomposition products of the solid electrolyte intermediate (SEI) layer are an important factor in inducing changes in thermal runaway behaviour. At 60 °C, the accumulation of SEI decomposition products results in thicker SEI layers and shorter thermal runaway times. At 80 °C, the SEI decomposition products are heavily transformed into particles with a loose structure, generating a large amount of gas in the process, which further leads to the rupture of the aluminium-plastic film and the evaporation of the electrolyte, with a longer duration of thermal runaway and a lower maximum temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.