Abstract

The microstructure and properties of the aged Cu-Cr-Zr-Nb alloy were studied by means of hardness tester, universal tensile testing machine, conductivity meter, X-ray diffraction, scanning electron microscope, and transmission electron microscope. The results indicated that the hardness and TS (tensile strength) of the Cu-Cr-Zr-Nb alloy increased first and subsequently decreased with increasing the aging temperature. Nevertheless, the electrical conductivity is gradually increasing. The aged Cu-Cr-Zr-Nb alloy was mostly made up of Cu matrix, Cr particles, Cr2Nb, and CuZr compounds. Due to the effects of dislocations accumulated by cold drawing and twins produced during the aging process, the softening temperature of the alloy reached 590 ℃. When the Cu-Cr-Zr-Nb alloy was aged at 490 ℃, < 111 > replaced < 110 > in the optimal orientation of the alloy, and the KAM (kernel average misorientation) value inside the alloy was the largest. The alloy exhibited great comprehensive properties at 490 ℃ for 1 h, with a hardness of 144.4 HBW, a TS of 521 MPa, and an electrical conductivity of 78.3%IACS. The contribution value of YS (yield strength) at different aging temperatures was further calculated. The computational results showed that precipitation strengthening was the main strengthening mechanism of the Cu-Cr-Zr-Nb alloy, and fine-grained strengthening and dislocation strengthening simultaneously played a supplementary role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call