Abstract
Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34–99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over 6 decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.