Abstract

Film toughness measurements of certain ethylene-alpha-olefin copolymers of high impact strength, show significant aging effects, decreasing with time. In this work we studied the time and temperature dependence of film aging of several copolymers of varying molecular structure. Film aging appears to be associated with the presence of highly branched polymer chains (>30 branches per 1000 carbon atoms). It is speculated that the thermally activated rearrangement of such branched species, over time and under film storage conditions, leads to film aging. Higher film storage temperatures lead to faster aging. It is possible to employ an “accelerated aging” testing protocol to predict longer-term aged data from a short-term test, which would be useful in an industrial production setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.