Abstract
The purpose of this study was to evaluate the effect of aging and fiber-reinforcement on the color stability, translucency, and microhardness of single-shade resin composites versus multi-shade resin composite. Four resin composites (Filtek Z250, Omnichroma, Vittra APS Unique, Zenchroma) were tested. Three subgroups of specimens were prepared for each of the composites: control, polyethylene fiber-reinforcement, and glass fiber-reinforcement- groups (n = 10/per group). The samples were subjected to aging for 10,000 thermal cycles. Color differences (ΔE00 ) were calculated after aging. Relative translucency parameter (RTP00 ) and microhardness values were calculated before and after aging. A two-way analysis of variance and the generalized linear model was used (p < 0.05). The lowest and highest ΔE00 values were found for Filtek Z250 (0.6 ± 0.2) and Omnichroma resin composites (1.6 ± 0.4), respectively. The ΔE00 value of the polyethylene fiber-reinforcement group (1.2 ± 0.6) was significantly higher than the ΔE00 value of the glass fiber-reinforcement group (1.0 ± 0.4, p < 0.001). The RTP00 value of the glass fiber-reinforcement group (1.92 ± 0.78) was significantly higher than the RTP00 value of the polyethylene fiber-reinforcement group (1.72 ± 0.77, p < 0.001). The highest microhardness values were found in glass fiber-reinforcement group (76.48 ± 17.07, p < 0.001). Single-shade resin composites were more translucent, had higher color change, and lower hardness than multi-shade resin composite. For relative translucency and microhardness, statistical significance was found in the material and fiber type interaction. The glass fiber-reinforcement provided higher translucency, lower color change and higher microhardness values than polyethylene fiber-reinforcement group after aging. Thermocycling had a significant impact on the color stability, translucency parameter, and microhardness of the tested resin composite materials. Single-shade resin composite materials have greater color-changing potential. The glass fiber-reinforcement optimize resin material mechanical properties and color stability more than polyethylene fiber-reinforcement.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.