Abstract

We examined the effect of aging and cortical stroke on the rate of motor adaptation (adaptation rate) and amount of performance gains (adaptation plateau) in balance skills. Fourteen older (≥60 years) and fifteen younger (<60 years) adults with chronic stroke, and thirteen healthy older adults (≥60 years) participated. Participants experienced 8 consecutive gait-slips (≤45 cm) to their non-paretic/dominant limb. Slip outcome (backward/no balance loss) was compared using generalized estimating equations (GEE). Proactive (pre-slip stability) and reactive adjustments (post-slip stability, slip displacement and velocity, and compensatory step length) were compared using non-linear regression models. GEE showed the main effect of group, trial, and group × trial interaction for slip outcome (p < 0.05). There were no differences in the adaptation rate for proactive and reactive variables and plateau for proactive variables (p > 0.05). However, both stroke groups demonstrated a smaller adaptation plateau for the majority of reactive variables compared to healthy older adults (p < 0.05). The rate of adaptation to gait-slips does not slow with aging and cortical stroke; however, cortical stroke, age notwithstanding, may reduce performance gains in reactive balance skills, possibly hindering retention and transfer to real-life scenarios. People with stroke may need adjunctive therapies/supplemental agents to apply laboratory-acquired balance skills to daily life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call