Abstract

Fluidized bed agglomeration is used to stabilize particulate mixtures and reduce dust emissions. This technology is applied to a variety of production processes for the pharmaceutical, chemical, fertilizer and food industries. In most of these applications, agglomerate stability is an essential criterion. Agglomerates and granules that do not conform to size and shape specifications may create problems in downstream processes, such as tableting, thus compromising process efficiency and product quality. When an agglomerate is formed in a fluidized bed, it can grow by incorporating other bed particles, split into smaller fragments, or be eroded by fluidized bed solids. The objective of the present study is to determine the critical agglomerate liquid content at which the rates of agglomerate growth and shrinkage are balanced when artificial agglomerates made from glass beads and water are introduced into a fluidized bed. This study examined the effects of agglomerate size, agglomerate density, liquid viscosity, binder concentration, and fluidizing gas velocity on the critical initial liquid content. This study found that small agglomerates and low density agglomerates displayed higher critical initial moisture contents. When the viscosity was increased by using sugar solutions, agglomerates were very stable and had very low critical initial moisture contents. The study also found that as the superficial gas velocity increased, the agglomerates started to fragment, rather than erode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call