Abstract
The evolution during ageing time of a suspension of a submicronic γ-Al 2O 3 powder with HNO 3/Al 2O 3 = 2.16 mmol/g and H 2O/Al 2O 3 = 3.2 ml/g has been studied. The physico-chemical and rheological evolution has been followed up to 48 h of ageing. Surface charging and dissolution reactions are fast and proceed with comparable rates in the first 5 h to reach a stable pH 3.5 that corresponds to maximum surface charging and maximum Al 3+. Surface charging is responsible for the formation of the colloidal particles that aggregates to form the physic-type gel phase (weak gel). Gel formation is a slow process and is completed within 20 h of ageing. The suspensions present a non-Newtonian pseudoplastic behaviour; at shear = 10 s −1 viscosities between 0.03 and 0.5 Pa s are measured. Viscosity is strongly time dependent and shows a maximum about 27 h of ageing. This behaviour has been related to the presence of modification of the suspension composition during ageing: viscosity increases due to the increasing amounts of gel, the increasing of gel strength and flocks formation, while the viscosity decreases due to both decrease of gel strength and flocks re-dispersion. Well adherent coating layers characterised by loadings between 1.1–2.2 mg/cm 2 and thickness of 10–20 μm have been obtained upon dip-coating deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.