Abstract

BackgroundMultichannel surface electromyography (EMG) is a method to examine properties of motor unit (MU) activity using multiple electrodes arranged on a two-dimensional grid. This technique can be used to examine alterations in EMG activity distribution due to contraction intensity as well as due to physiological differences such as age or sex. Therefore, the purpose of this study was to compare strength and high-density surface EMG (HDsEMG) features during isometric and isokinetic knee extensions between older and younger men and women.MethodsTwenty younger (ages 19–25 years) and twenty older (ages 64–78) men and women performed submaximal and maximal isometric (at a joint angle of 90°) and isokinetic knee extensions, while HDsEMG was recorded from the vastus lateralis. Spatial distribution was estimated using the root mean square (RMS), and 2-dimensional (2D) maps were developed to examine spatial features. Coefficient of variation (CV) and modified entropy were used to examine alterations in muscle heterogeneity and pattern. Peak torque and HDsEMG parameters were compared across age and gender.ResultsYounger males and females produced significantly higher mean torque than the older group (p < 0.001) for all contractions. Both age- and sex-related significant differences (p < 0.05) were found for EMG spatial features suggesting neuromuscular differences. Modified entropy was significantly higher and CV was lower for young females compared to young males (p < 0.05) across both isometric and isokinetic contractions.ConclusionsWe found that isometric and isokinetic knee extension strength, spatial distribution, and intensity differ as a function of age and sex during knee extensions. While there were no differences detected in entropy between age groups, there were sex-related differences in the younger age category. The lack of age-related differences in entropy was surprising given the known effects of aging on muscle fiber composition. However, it is often reported that muscle coactivation increases with age and this work was limited to the study of one muscle of the knee extensors (vastus lateralis) which should be addressed in future work. The findings suggest while both age and sex affect muscle activation, sex had a greater effect on heterogeneity. The results obtained will help to develop improved rehabilitation programs for aging men and women.

Highlights

  • Multichannel surface electromyography (EMG) is a method to examine properties of motor unit (MU) activity using multiple electrodes arranged on a two-dimensional grid

  • It is well established that aging leads to muscular weakness and morphological changes in skeletal muscle including a decline of muscle mass [1,2,3]

  • Surface electromyography (EMG) employs electrodes placed over the skin to record the electrical activity that brings about muscle contraction and provides important information regarding peripheral properties and central strategies of the neuromuscular system [4]

Read more

Summary

Introduction

Multichannel surface electromyography (EMG) is a method to examine properties of motor unit (MU) activity using multiple electrodes arranged on a two-dimensional grid. This technique can be used to examine alterations in EMG activity distribution due to contraction intensity as well as due to physiological differences such as age or sex. With respect to sex differences in MU behavior, multichannel EMG has been used to show that females exhibit more varied motor unit recruitment compared to males during sustained low-intensity isometric contractions [18]. While multichannel surface EMG is an indirect method of assessing MU behavior, it can provide insight regarding MU activation patterns, does not require insertion of needles, and is more tolerable

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call