Abstract

Statistical analysis of human cadaver cervical spine compression experiments. To quantify the cervical spine compressive injury threshold as a function of the person's age, gender, and external loading rate. Results of epidemiologic studies have indicated that most survivors of cervical spinal cord injury have spinal column fractures and dislocations that result from a compression or compression-flexion force vector. Cervical spinal column injury thresholds are dependent on many factors. Delineation of the injury thresholds according to age, gender, and loading rate is necessary to improve clinical assessments and prevention strategies. Twenty-five human cadaver head-neck compression tests were included in the analysis. Two statistical models were used to quantify the effects of age, gender, and loading rate on the force required to induce failure in the cervical spine. A multiple linear regression model provided a direct equation that quantified the effects of the variables, and a proportional hazards model was used to quantify probability of injury with each factor. The regression model had a correlation coefficient of 0.87. There was an interactive effect between age and loading rate: Increasing age reduced the effect of loading rate and at approximately 82 years, loading rate had no effect. Men were consistently 600 N stronger than women. The 50% probability of failure for a 50-year-old man at a 4.5-m/sec loading rate was approximately 3.9 kN. Differences in probability curves followed the same trends as seen in the regression model. The effects of age on cervical spine injury threshold are coupled with the rate of loading experienced through the external force vector that causes the trauma. Assessment of injury mechanisms and thresholds should be based on the person's age, gender, and loading rate to determine treatment and prevent injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.