Abstract
To study the capability of the CdSe thin films to use as an absorber layer in semi-transparent thin film solar cells, the structural, optical, electrical and photovoltaic properties of thermally evaporated CdSe thin films (thickness 300 nm) as a function of silver-doping were investigated. A novel and facile method was used to Ag-doping of the samples. Some aqueous solution of silver nitrate (with various concentration) was spin coated onto the surface of CdSe thin films followed by air-annealing to diffuse silver dopants into the layers. The field emission scanning electron microscope (FE-SEM) images showed that the surface of CdSe thin films was improved with our doping method. X-ray diffraction (XRD) analysis revealed the hexagonal structure of the samples. The crystallite size, micro-strain and dislocation density of CdSe thin films were evaluated using XRD patterns. The transmittance spectra in the wavelength range of 400–2500 nm were measured and then used to study other optical parameters. The optical energy band gap was decreased with Ag-doping from 1.96 eV to 1.67 eV. The electrical conductivity of FTO/CdSe:Ag/Al Schottky junction devices was improved by Ag-doping, and the photovoltaic efficiency was increased by Ag-doping form 1.53% for the undoped sample to 2.78% for the sample with the highest doping concentration. Obtained results show that Ag-doped CdSe thin films are a promising candidate to use as an absorber layer in semi-transparent solar cells and colorful photovoltaic windows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.