Abstract

Zinc oxide-graphitic carbon nitride (ZnO/g-C3N4) composites were synthesized by precipitation method in order to improve photocatalytic activity under visible light. To enhance antimicrobial activity, silver was added into zinc oxide-graphitic carbon nitride (Ag/ZnO/g-C3N4). Ultrastructures of the composite were analyzed by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Photocatalytic activity of the composites was carried out by degradation of methylene blue solution as a function of contact time. The results revealed that ZnO/g-C3N4 was capable of dye degradation at 96.65%. Addition of Ag into ZnO/g-C3N4 resulted in increase of dye reduction rate. For antibacterial test, Ag/ZnO/g-C3N4 exhibited bactericidal activity against Pseudomonas aeruginosa and Bacillus cereus. For antifungal test, Ag/ZnO/g-C3N4 showed resistance to Aspergillusniger for 7 days. Ag/ZnO-g-C3N4 composite exhibited better photocatalytic and antimicrobial activities compare to ZnO and g-C3N4. These results indicate that precipitation method is a cheap, rapid and efficient method that can be used to synthesize Ag/ZnO-g-C3N4 composites. For further studies, applications of this Ag/ZnO-g-C3N4 composites in microbiological and agricultural fields will be carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.