Abstract

Controlling cariogenic biofilm formation by plant extracts could add to preventive strategies to dental caries. To evaluate in vitro the role of Aerva Sanguinolenta ethanolic extract on biofilm-induced microbial human enamel demineralization. The prepared enamel sections of study group (SG), positive control group (PCG), and negative control group (NCG) were immersed in 2 ml of 0.2% ethanolic extract of A. sanguinolenta, 0.12% chlorhexidine, and distilled water, respectively, for 2 min before subjecting to closed batch culture technique utilizing mono- or dual-species culture media of Streptococcus mutans and Lactobacillus acidophilus. Quantification of biofilm and demineralization of enamel was performed by crystal violet (CV) assay and scanning electron microscope (SEM) attached to energy-dispersive X-ray analysis, respectively. Two-way ANOVA and Tukey's test were used for analysis. CV assay of biofilm recorded the highest and lowest optical absorbance value in NC3 (2.728660) and PC3 (0.364200), respectively. Thus, biofilm formation is highest in NCG and lowest among PCG. Surface roughness and porosity in enamel are greatest among NCG and lowest among SG as evident by SEM. Wt% of calcium (S3 47.7170) and phosphorus ion (S3 22.7330) was highest in SG, closely resembling that of B enamel (Ca = 41.9530, P = 19.6650). Wt% of oxygen is lowest in SG (S3 28.8920) and resembles baseline O2 (37.4950). Thus, the amount of biofilm formation is moderate and amount of demineralization of enamel is least among SGs. Enamel exposed to 2 ml of 0.2% solution of A. sanguinolenta for 2 min could fairly inhibit formation of biofilm and positively inhibit underlying demineralization in cariogenic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call