Abstract

Meteorological and aerosol data were measured at the atmospheric boundary layer observation station in Tianjin, China, and were analyzed to study the effects of aerosol mass, composition, and size distributions on visibility and short-wave radiation flux. The results show that fine particles played important roles in controlling visibility in Tianjin. The major contributors to light extinction coefficients included sulfate (28.7%), particulate organic matter (27.6%), elemental carbon (19.2%), and nitrate (6.1%). In addition to the measurement of aerosol composition, the size distribution of aerosol number concentrations were also measured and classified between haze days and non-haze days during spring. The extinction characteristics of ambient aerosol in haze days and non-haze days were calculated using Mie theory model. The average extinction coefficient and scattering coefficient of atmospheric aerosols were 0.253 1/km and 0.213 1/km in non-haze days, while 0.767 1/km and 0.665 1/km in haze days. A radiation transmission model LOWTRAN7 is also applied in this study. The model calculated radiant flux densities in haze days and non-haze days, which showed a fairly agreement with the observation results, showing that the heavy aerosol loadings in Tianjin had significantly impact on atmospheric visibility and radiation fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.