Abstract

The amorphous phase state of suspended nanoparticles affects their atmospheric lifetimes and environmental impact. Influence of relative humidity and chemical composition on the glass-to-liquid transition is well-known. However, the influence of the particle size on the phase transition remains uncertain. Here we show experimental data that probe the amorphous phase transition of suspended sucrose particles as a function of particle size. The depression in glass-transition temperature follows the Gibbs-Thomson or Keesom-Laplace predicted proportionality of ΔTg ∝ D-1 for particles 100-700 nm in diameter, but the proportionality changes to ΔTg ∝ D-1/2 for smaller sizes. Literature data for glass-transition temperature depression in thin films and nanoconfined compounds show similar and strong deviations from the expected D-1 behavior. While the observed proportionalities remain incompletely understood, the results here provide evidence that the deviation from ΔTg ∝ D-1 is not attributable to substrate effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.