Abstract

This study investigated aeration rate (0, 0.2, 0.4 and 1.0L/min) effects on algal-bacterial symbiosis (ABS) and conventional activated sludge (CAS) systems while treating domestic wastewater in sequencing batch reactors. Experiment results showed that ABS system performed better on NH4+-N, total nitrogen and total phosphorus removal than CAS system, especially under lower aeration rate condition (0.2Lair/min), with removal efficiencies improvements of 18.90%, 12.45% and 46.66%, respectively. The mechanism study demonstrated that a favorable aeration rate reduction (half of traditional value in CAS system) could enhance algae growth but weaken hydraulic shear force, which contributed to the interactions between algae and sludge flocs and further stability of ABS system. In addition, algae growth protected both ammonia and nitrite oxidizing bacteria from optical damage. It is expected that the present study would provide some new insights into ABS system and be helpful for development of low-energy demand wastewater treatment process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call