Abstract

The Surface-Piercing propeller blades move in and out of the water with each rotation to reduce the immersion depth from the free surface to the shaft axis . The main challenge facing surface piercing propellers, however, is their lower efficiency at lower advance velocity, compared to other propulsion systems. To improve the performance of the propeller, an aeration mechanism was used at low advance velocities so that air was blown to the surface behind the propeller. Experimental studies were carried out on a propeller model in the Hydrotech laboratory of the Iran University of Science and Technology, and the effect of the injected air velocity ratio was evaluated at different immersion ratios. Based on the results obtained, it was concluded that an increase in the injected air velocity ratio could only promote thrust enhancement under specific conditions. For immersion ratios of 0.85 and more, as well as advance coefficients of 0.6 and more, a change in the velocity ratio of the injected air could not lead to an improvement in thrust. The best performance was identified with an immersion ratio of 0.4 and an advance coefficient of 0.4, while thrust performance at below or above of this condition declined .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.