Abstract

We present calculations of favored dynamo modes when advection of ambient magnetic fields onto accretion disks is important. These models are relevant for compact binary systems and young stellar objects and can be extended to active galactic nuclei (AGNs). The dynamo equation, including the standard alpha-effect, is modified to take into account advected magnetic fields. Vacuum boundary conditions are assumed outside the disk and the dynamo number switches sign across the equatorial plane. For the local steady state problem, critical dynamo numbers for various modes are obtained analytically. Our motivation is to investigate whether the dominant dynamo generation of quadrupolar magnetic fields and accretion of dipolar magnetic fields is likely to lead to particle acceleration in the form of jets. The results shown here are for a particlular choice of boundary conditions and geometry of the advected field. Besides examining other choices, we shall calculate growth rates for different modes, and the influence of the initial seed field configuration on the evolution of the magnetic fields in subsequent work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.