Abstract

The static bending model of microcantilever with monolayer molecules has been established based on energy method, in which the change in neutral layer position caused by adsorption-induced stress is introduced. On this basis, we have analyzed the relationship between the bending curvature radius of a microcantilever with its thickness, Young’s modulus and molecule-molecule distance of adsorbed molecules when it is adsorbed with monolayer water molecules. Additionally, we have investigated the effect of change in neutral layer position on the static behavior of microcantilever sensors. The results show that 1)the bending curvature radius of microcantilever is the linear, quadratic and eight approximation function of its Young’s modulus, thickness and distance of adsorbed molecules, respectively; 2)the predicted error of bending curvature radius caused by the change in neutral layer position slightly increases with decreasing Young’s modulus and thickness, whereas the effect of distance between adsorbed molecules on the error is significant; 3)the change in neutral layer position can cause a significant effect on the sensitivity and surface strain of the microcantilever

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call