Abstract

BackgroundThe (mis)use of fluoroquinolones in the fowl industry has led to an alarming incidence of fluoroquinolone resistance in pathogenic as well as commensal bacteria. Next to simply reducing antimicrobial consumption, optimizing dosage regimens can be regarded as a suitable strategy to reduce antimicrobial resistance development without jeopardizing therapy efficacy and outcome. A first step in order to limit antimicrobial resistance is to assess the exposure of the intestinal microbiota to enrofloxacin after different treatment strategies. Therefore, a study was conducted in broiler chickens to assess the effect of route of administration (oral versus intramuscular) and dose escalation (10 and 50 mg/kg body weight) on plasma and intestinal concentrations of enrofloxacin and its main metabolite ciprofloxacin after treatment with enrofloxacin once daily for five consecutive days. Four different parts of the intestinal tract were sampled: ileum, cecum, colon and cloaca. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify both analytes in plasma and intestinal content. Sample preparation prior to LC-MS/MS analysis consisted of extraction with ethyl acetate. For intestinal content samples PBS buffer was added before extraction. The supernatant was evaporated to dryness and resuspended in water prior to analysis.ResultsThe results in plasma and intestinal content demonstrated that biotransformation of enro- to ciprofloxacin in broiler chickens is limited. In general, the intestinal microbiota in cecum and colon is exposed to significant levels of enrofloxacin after conventional treatment (21–130 μg/g). A clear increase of intestinal concentrations was demonstrated after administration of a five-fold higher dose (31–454 μg/g). After intramuscular administration, intestinal concentrations were comparable, except for the higher levels in cloaca due to the complete bioavailability and urinary excretion.ConclusionsThe intestinal microbiota is exposed to high levels of the antimicrobial, after oral as well as parenteral therapy. Furthermore, a dose and time dependent correlation was observed. The impact of the detected intestinal levels on resistance selection in the intestinal microbiota has to be further investigated.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-014-0289-1) contains supplementary material, which is available to authorized users.

Highlights

  • Theuse of fluoroquinolones in the fowl industry has led to an alarming incidence of fluoroquinolone resistance in pathogenic as well as commensal bacteria

  • This broad spectrum antimicrobial is indicated in poultry for the treatment of respiratory and intestinal tract infections caused by Mycoplasma gallisepticum, Mycoplasma synoviae, Avibacterium gallinarum, Pasteurella multocida and Escherichia coli

  • Theuse of this class of drugs in the fowl industry has led to an alarming incidence of fluoroquinolone resistance in pathogenic as well as commensal bacteria [1]

Read more

Summary

Introduction

The (mis)use of fluoroquinolones in the fowl industry has led to an alarming incidence of fluoroquinolone resistance in pathogenic as well as commensal bacteria. A first step in order to limit antimicrobial resistance is to assess the exposure of the intestinal microbiota to enrofloxacin after different treatment strategies. Enrofloxacin is a fluoroquinolone chemotherapeutic frequently used in veterinary medicine. This broad spectrum antimicrobial is indicated in poultry for the treatment of respiratory and intestinal tract infections caused by Mycoplasma gallisepticum, Mycoplasma synoviae, Avibacterium gallinarum, Pasteurella multocida and Escherichia coli (E. coli). The (mis)use of this class of drugs in the fowl industry has led to an alarming incidence of fluoroquinolone resistance in pathogenic as well as commensal bacteria [1]. The high rate of fluoroquinolone resistance is of concern for veterinary medicine (e.g. treatment failure) and for human medicine as resistant bacteria can be transferred through the food chain, through direct contact with animals or through the environment (contaminated soil) [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call