Abstract
We have theoretically investigated the effect of adiabatic trapping of electrons on ion temperature gradient (ITG) driven nonlinear drift mode in a warm and dispersive electron-ion plasma. For this purpose, we have incorporated the gradients in the background plasma density, ion temperature and ambient magnetic field and derived two different nonlinear partial differential equations (NLPDEs). One of them contains only fractional nonlinearity while the other one incorporates the effect of both quadratic and fractional nonlinearities. We have obtained the exact solutions of these NLPDEs by using the functional variable method. We have used the graphical analysis to carry out the parametric study of the obtained solutions for the Tokamak plasma parameters. We have shown that the amplitude and the width of these nonlinear structures depend on the plasma parameters like T e , T i and η i . This work may be helpful to understand the effect of electron trapping on the low frequency drift type modes in laboratory and space plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.