Abstract

ATP has been known to act as an extracellular signal and to be involved in various functions of kidney. Renal proximal tubular reabsorption of phosphate (Pi) contributes to the maintenance of phosphate homeostasis, which is regulated by Na+/Pi cotransporter. However, the effects of ATP on Na+/Pi cotransporters were not elucidated in proximal tubule cells (PTCs). Thus, the effects of ATP on Na+/Pi cotransporter and its related signal pathways are examined in the primary cultured renal PTCs. In the present study, ATP inhibited Pi uptake in a time (> 1 h) and dose (>10(-6)M) dependent manner. ATP-induced inhibition of Pi uptake was correlated with the decrease of type II Na+/Pi cotransporter mRNA. ATP-induced inhibition of Pi uptake may be mediated by P2Y receptor activation, since suramin (non-specific P2 receptor antagonist) and RB-2 (P2Y receptor antagonist) blocked it. ATP-induced inhibition of Pi uptake was blocked by neomycin, U73122 (phospholipase C (PLC) inhibitors), bisindolylmaleimide I, H-7, and staurosporine (protein kinase C (PKC) inhibitors), suggesting the role of PLC/PKC pathway. ATP also increased inositol phosphates (IPs) formation and induced PKC translocation from cytosolic fraction to membrane fraction. In addition, ATP-induced inhibition of Pi uptake was blocked by SB 203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by PD 98059 (a p44/42 MAPK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK, which was not blocked by PKC inhibitor. In conclusion, ATP inhibited Pi uptake via PLC/PKC as well as p38 MAPK in renal PTCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.