Abstract

The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1, 4,5)P3 receptor. It was observed that 3'-phosphoadenosine 5'-phosphoulphate, CoA, di(adenosine-5')tetraphosphate (Ap4A) and di(adenosine-5')pentaphosphate (Ap5A) were more effective than ATP. Ap4A and Ap5A also interacted with a lower EC50 than ATP. In order to find out how these adenine nucleotides affected Ins(1,4, 5)P3-induced Ca2+ release, we have measured their effect on the response of permeabilized A7r5 cells to a progressively increasing Ins(1,4,5)P3 concentration. Stimulatory ATP and Ap5A concentrations had no effect on the threshold Ins(1,4,5)P3 concentration for initiating Ca2+ release, but they stimulated Ca2+ release in the presence of supra-threshold Ins(1,4,5)P3 concentrations by increasing the co-operativity of the release process. Inhibition of the Ins(1,4,5)P3-induced Ca2+ release at higher ATP concentrations was associated with a further increase in co-operativity and also with a shift in threshold towards higher Ins(1,4,5)P3 concentrations. ATP had no effect on the non-specific Ca2+ leak in the absence of Ins(1,4,5)P3. We conclude that the adenine-nucleotide-binding site can be activated by many different adenine nucleotides. Binding of these compounds to the transducing domain of the Ins(1,4,5)P3 receptor increases the efficiency of transmitting Ins(1,4,5)P3 binding to channel opening. The inhibition by high ATP concentrations is exerted at a different site, related to Ins(1,4,5)P3 binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.