Abstract

Pinning stability and the introduction of magnetic flux pinning is an essential problem in applications of high-Tc superconductors. Study on the role of addition of a variety of metal oxides into GdBa2Cu3O7−δ (Gd123) bulk superconductors was carried out. We found that the addition of 0.05 wt. % of soft magnetic alloy particles Fe-Cu-Nb-Si-Cr-B (Fe-B) into the Gd123 contributes to the enhancement of the critical current density (Jc) under a wide range of applied magnetic fields up to 3 T. The Fe-B particles refined less than 10 μm by ball milling indicate no remarkable contribution on the Jc under the magnetic field. The reduction of the Ba content resulted in the appearance of a peak of Jc which has been observed in the Gd/Ba solid solution with rich Ba content. These results let us discriminate the effect of the magnetic particles from other conventional flux pinning mechanism. The peak of Jc under magnetic field was not only observed in the part along the c-axis under the seed of the sample but also in the growth sector around the periphery of the Gd123 bulk with Fe-B addition. It indicates that the magnetic particles inclusions play an important role on the homogeneous enhancement of Jc and the high flux pinning performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call