Abstract
Spray drying trials were carried out to produce amorphous sucrose powder. Firstly, pure sucrose solutions were prepared and spray dried at inlet and outlet temperatures of 160 °C and 70 °C, respectively. No amorphous powder was obtained and only 18% of the feed solids were recovered in a crystalline form, with the remaining solids lost as wall deposits. Secondly, sodium caseinate (Na–C) and hydrolyzed whey protein isolate (WPI) were added in sucrose:protein solid ratios of (99.5:0.5) and (99.0:1.0) and drying trials were conducted maintaining the initial drying conditions. In both these cases, greater than 80% of the feed solids were recovered in an amorphous form. The increase in protein concentration from 0.5% to 1% on dry solid basis did not further improve the recovery. The remarkable increase in recovery from a small addition of protein is attributed to preferential migration of protein molecules to the droplet-air interface, and the subsequent transformation of the thin, protein-rich film into a non-sticky glassy state upon drying. This film overcomes both the particle-to-particle and particle-to-wall stickiness. The measured bulk glass rubber transition temperature ( T g–r) values of the bulk mixtures at various moisture contents were very close to the corresponding mean glass transition temperature ( T g) of the pure sucrose indicating that surface layer T g rather than the bulk T g is responsible for this. Electron spectroscopy for chemical analysis (ESCA) studies revealed that the particle surface was covered by 50–58% (by mass) proteins. The calculated glass transition temperature of the surface layer ( T g,surface layer), based on the surface elemental compositions, showed that the T g,surface layer has increased to the extent that it remained within the safe drying envelope of spray drying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.