Abstract

An attempt has been made in the present research to develop construction friendly, self-compacting, alkali-activated slag concrete mixes with ground granulated blast furnace slag (GGBFS) as the major source of binder material. In an effort to make the concrete mixes more eco-friendly and sustainable, by-products from Iron and Steel Industry such as steel slag sand and Electric Arc Furnace (EAF) slag aggregates, were used as the fine and coarse aggregates respectively. While the total binder content has been varied in the range of 700 – 800 kg/m3 (in increments of 50 kg/m3), all the trial mixes had a constant w/b ratio of 0.40. Different amounts of sodium silicate solutions, with specified amounts of sodium hydroxide flakes dissolved in them, are used as alkaline solutions, with the combined Na2O percentage in them varying between 6% - 8%. Test specimens were cast with mixes which showed enhanced flow-properties as per relevant EFNARC guidelines and were tested for their mechanical strength and durability characteristics. Effect of admixing of ordinary Portland cement (OPC) in smaller percentages (2.5% - 10 %, in increments of 2.5%), on the performance characteristics of this novel class of AAC mixes is evaluated. Increased cement contents are found to lead to better flow ability properties and higher strengths values with lower sorptivity values in all the Cement-Admixed, Self-compacting, Alkali-Activated Slag Concrete mixes (CASAASC mixes) tested herein. Studies with a scanning electron microscope have shown more densified morphologies developed, accounting for better performances of these mixes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call