Abstract

The effects of a trace amount (~0.1 at.%) of added stabilizing elements (Nb, Ti, and Zr) on the tensile properties of 18Cr ferritic stainless steel sheets at strain rates ranging from 10−3–102 s−1 (from ordinary quasi-static deformation to dynamic deformation) were investigated. The additional Ti or Zr elements formed coarse carbide or nitride precipitates, which consumed interstitial solute elements (C and/or N) in the ferrite matrix. In the Nb-added steel, however, only fine NbN precipitates with a few hundred nanometers in size were observed locally, implying a small amount of solute Nb in the ferrite matrix. Ti or Zr additions had only a slight effect on the deformation resistance of 18Cr ferritic steel sheets and strain rate sensitivity (m) of the flow stress, however, the Nb addition increased the deformation resistance and significantly reduced the strain rate sensitivity. The measured activation volume (v*) values of the Ti- and Zr-added steels (62 b3 and 66 b3) were almost equivalent to one of the 18Cr base steel (64 b3). This result suggested that a general thermally activated process for screw dislocation motion is controlled by double-kink nucleation, which is slightly affected by Ti or Zr additions. The high v* value (106 b3) of the Nb-added steel indicated that the thermally activated process of plastic deformation would be associated with the substitutional solute Nb atoms (act as short-range obstacles) interacting with the moving dislocations. These results showed that the Nb element played a distinct role in plastic deformation from the other stabilizing elements of Ti and Zr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call