Abstract

An approximate analytical method for evaluating the efficiency of the action of an inhibitor on the velocity and propagation limits of a flame in rich hydrogen-air mixtures with small amounts of added propylene and isobutylene inhibitors is proposed. The method is based on the model of a narrow reaction zone and the distinct features of the branching chain mechanism of hydrogen oxidation reactions. Using this method, it is shown that the occurrence of flame propagation limits at higher concentrations of added reactive agents (inhibitors) is caused by the existence of a positive feedback between the flame front velocity and the number of active combustion sites, which break down in the inhibitor-added reaction. According to this feedback, the action of the inhibitor decreases the flame temperature and flame velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.