Abstract
This paper presents a Monte Carlo based approach to evaluate the maximum torsional torques induced in turbine-generator shafts during high-speed reclosing following system faults. In this context, investigations have been conducted on a large turbine-generator model taking into consideration the uncertainty of several factors associated with the practical operation of a power system. In the case of unsymmetrical faults, two switching schemes were considered in clearing and reclosing such faults, namely conventional (triple pole for line-to-line and double line-to-ground faults and single-pole for single line-to-ground faults) and selective-pole switching. In the latter case, the transmission system is balanced during the period between fault clearing and line reclosing using compensating capacitors. Moreover, an adaptive reclosing technique is used for reclosing the tripped phases. The effect of employing the adaptive short-time compensation and reclosing technique on the expected maximum torsional torques as well as their variances has been investigated. A risk index which reflects the likelihood that the torque induced in a turbine-generator shaft exceeds its design value is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.