Abstract

For humans, acute and chronic overexposure to ultraviolet (UV) radiation can cause tissue damage in the form of sunburn and promote cancer(s). The immune-modulating properties of UV radiation and health-related consequences are not well known. Herein, we used the larvae of the wax moth Galleria mellonella, to determine UV-driven changes in cellular components of innate immunity. From immune cell (haemocyte) reactivity and the production of antimicrobial factors, these insects share many functional similarities with mammalian cellular innate immunity. After exposing insects to UVA or UVB for up to two hours, we monitored larval viability, susceptibility to infection, haemolymph (blood) physiology and faecal discharge. Prolonged exposure of larvae to UVB coincided with decreased survival, enhanced susceptibility to bacterial challenge, melanin synthesis in the haemolymph, compromised haemocyte functionality and changes in faecal (bacterial) content. We contend G. mellonella is a reliable in vivo model for assessing the impact of UV exposure at the whole organism and cellular levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call