Abstract

Extreme warming events that contribute to mass coral bleaching are occurring with increasing regularity, raising questions about their effect on coral reef ecological interactions. However, the effects of such events on parasite-host interactions are largely ignored. Gnathiid isopods are common, highly mobile, external parasites of coral reef fishes, that feed on blood during the juvenile stage. They have direct and indirect impacts on their fish hosts, and are the major food source for cleaner fishes. However, how these interactions might be impacted by increased temperatures is unknown. We examined the effects of acute temperature increases, similar to those observed during mass bleaching events, on survivorship of gnathiid isopod juveniles. Laboratory experiments were conducted using individuals from one species (Gnathia aureamaculosa) from the Great Barrier Reef (GBR), and multiple unknown species from the central Philippines. Fed and unfed GBR gnathiids were held in temperature treatments of 29 °C to 32 °C and fed Philippines gnathiids were held at 28 °C to 36 °C. Gnathiids from both locations showed rapid mortality when held in temperatures 2 °C to 3 °C above average seasonal sea surface temperature (32 °C). This suggests environmental changes in temperature can influence gnathiid survival, which could have significant ecological consequences for host-parasite-cleaner fish interactions during increased temperature events.

Highlights

  • Among the myriad anthropogenic impacts on the world’s oceans, perhaps the most significant is the increase in temperature associated with production of greenhouse gases [1]

  • By conducting laboratory experiments on gnathiids in two coral reef regions subject to bleaching, Great Barrier Reef (GBR), Australia [31,32,98], and Philippines [99,100,101], we show that a rapid increase in temperature causes significant increases in mortality

  • The findings reported here are consistent with their hypothesis that this may be attributable, in part, to a direct effect of temperature on gnathiid mortality

Read more

Summary

Introduction

Among the myriad anthropogenic impacts on the world’s oceans, perhaps the most significant is the increase in temperature associated with production of greenhouse gases [1]. This warming is responsible for large-scale changes in circulation and storm activity through melting of glaciers, warming of air masses, and increased evaporation and salinity [1], and as such, warming may have an indirect effect on marine organisms. Warming can subsequently impact entire ecological communities and ecosystems by differentially impacting individuals and functional traits [19,20,21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call