Abstract

We have reinvestigated the hypothesis of the relative importance of glomus cell plasma and mitochondrial membrane potentials (E(m) and psi(m), respectively) in acute hypoxia by a noninvasive fluorescence microimaging technique using the voltage-sensitive dyes bis-oxonol and JC-1, respectively. Short-term (24 h)-cultured rat glomus cells and cultured PC-12 cells were used for the study. Glomus cell E(m) depolarization was indirectly confirmed by an increase in bis-oxonol (an anionic probe) fluorescence due to a graded increase in extracellular K(+). Fluorescence responses of glomus cell E(m) to acute hypoxia (approximately 10 Torr Po(2)) indicated depolarization in 20%, no response in 45%, and hyperpolarization in 35% of the cells tested, whereas all PC-12 cells consistently depolarized in response to hypoxia. Furthermore, glomus cell E(m) hyperpolarization was confirmed with high CO (approximately 500 Torr). Glomus cell psi(m) depolarization was indirectly assessed by a decrease in JC-1 (a cationic probe) fluorescence. Accordingly, 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (an uncoupler of oxidative phosphorylation), high CO (a metabolic inhibitor), and acute hypoxia (approximately 10 Torr Po(2)) consistently depolarized the mitochondria in all glomus cells tested. Likewise, all PC-12 cell mitochondria depolarized in response to FCCP and hypoxia. Thus, although bis-oxonol could not show glomus cell depolarization consistently, JC-1 monitored glomus cell mitochondrial depolarization as an inevitable phenomenon in hypoxia. Overall, these responses supported our "metabomembrane hypothesis" of chemoreception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call